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AIRBORNE REMOTE SENSING TO DETECT PLANT

WATER STRESS IN FULL CANOPY COTTON

W. R. DeTar,  J. V. Penner,  H. A. Funk

ABSTRACT. The potential for monitoring plant water stress in full-canopy cotton using airborne remote sensing was examined
in this study. Remote sensing data, using hyperspectral (HSI), multispectral (MSI), and thermal infrared (TIR) sensors, were
collected over two seasons on two varieties of Acala cotton and two experimental fields, with a total of nine flights, all with
100% canopy cover. The spatial resolution of the remote sensing data used in the study was near 1.0 m. The TIR camera was
used to detect the elevated canopy temperature that occurs when the plants are water stressed. The degree of stress, as
measured by the rise in canopy temperature above an unstressed baseline, was closely related to several new vegetation
indices that use spectral bands in the range of 429 to 1010 nm. Both linear and nonlinear multiple regression were used to
find the wavelengths that produced the highest coefficient of determination (r2) and lowest root mean square error (RMSE)
for one-, two-, three-, and four-parameter HSI models. The MSI-based vegetation indices had significant correlations to plant
water stress, but the r2 values were lower than those with the HSI data. The best two-parameter HSI models included one band
each from the near-infrared (NIR; 850 nm) and visible (686 nm) ranges. The best three-parameter model used the bands
centered at 686, 811, and 860 nm. A weighted normalized difference vegetation index (NDVI) was found to correlate well to
water stress with r2 = 0.883. The average reflectance over the range of 923 nm to 1010 nm was found to be an indicator of
differences in the canopy temperature. The main finding was that the plant water stress in Acala cotton at full canopy can
be detected with airborne remote sensing, and this should greatly enhance the ability to properly schedule irrigations.

Keywords. Cotton, Hyperspectral imagery, Irrigation, Multispectral imagery, Precision farming, Spectral response patterns,
Vegetation indices.

emote sensing can provide the spatial distribution
of varying crop growth and conditions that are re-
quired for precision farming (Maas, 1998; Moran
et al., 1997; Dawson, 1997). Many vegetation

indices have been used to empirically relate remotely sensed
data to crop properties (Thenkabail et al., 2000; Thorp et al.,
2004). Goel et al. (2003) found that various functions of the
normalized difference vegetation index (NDVI) correlated
better and showed more consistency than multiple regression
models developed from airborne hyperspectral data for nine
different properties of a corn crop.

Plant water stress is a major factor affecting crop yield.
Irrigation to avoid or relieve this stress must be done
judiciously, not only to avoid environmental problems such
as groundwater pollution and runoff, but also to keep the cost
down on a limited and expensive resource. The temperature
of the plant canopy has been used for sensing plant water
stress ever since the development of the infrared thermome-
ter made this measurement possible without physically
touching the plant (Ehrler et al., 1978). A study by Moran et
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al. (1989) showed that water stress on alfalfa affected the
canopy architecture and reduced the spectral reflectance in
both the near-infrared (NIR) and red regions. Jackson et al.
(1983) used several ratios and linear combinations of bands,
and concluded that water stress on wheat could not be
detected until there was a stress-induced retardation in
growth. Peñuelas et al. (1996) showed a linear relationship
between relative water content (RWC) and the water index
(WI), which is the reflectance ratio R900/R970, for wheat at
full canopy.

For cotton, Bowman (1989) found that the relative
reflectance at 810, 1665, and 2210 nm wavelengths increased
as RWC decreased. Jackson et al. (1981) showed that the
degree of plant water stress is directly proportional to the rise
in the canopy temperature above an unstressed baseline
temperature.  This rise in canopy temperature was also the
basis for the work done by Wanjura and Upchurch (2000) on
cotton and corn. The baseline canopy temperature is the
temperature of the canopy for healthy, well-watered plants.
Because of an evaporative cooling effect, it is several degrees
below air temperature, depending on the vapor pressure
deficit (VPD) of the air above it. Plant et al. (2000) were able
to relate the onset of water stress in cotton to NDVI. Maas et
al. (1999) showed the effects of developing moisture stress,
as indicated by a rise in canopy temperature, using airborne
thermal infrared (TIR) data from daily flights over drip-irri-
gated cotton plots suddenly deprived of water. Temperatures
rose by as much as 10°C above those in unstressed plots.

Because of the natural variability of soil in any large field,
determining the proper time to irrigate a large field of cotton
is difficult. In those parts of the field that are not stressed,
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irrigating too early can lead to rank growth and reduced yield.
In other parts of the field, the soil may have a lower water
holding capacity, or rooting depth may be limited, and
irrigating too late can cause excessive stress, again reducing
yield. Timing the irrigation based on what the irrigator can
see from the edge of the field can be misleading. It would be
helpful in planning and managing the irrigation system to
know the degree of plant water stress in every part of the field.
Thus, the aim of this study was to use airborne multispectral
and hyperspectral data to produce prediction models that
would provide detailed maps of plant water stress in cotton.

MATERIALS AND METHODS
EXPERIMENTAL FIELDS

The site for this study was the Shafter Research and
Extension Center of the University of California, which is
located near the southern end of the San Joaquin Valley, at
35° 31′ N, 119° 17′ W, and 109 m above sea level. Annual
average precipitation is 167 mm, of which only 8 mm occurs
during the growing season. All the soils on the station are
mapped as a Wasco sandy loam (coarse-loamy, mixed,
non-acid, thermic Typic Torriothents). In 2001, Acala NemX
cotton was grown in field 42, which is a 2.6 ha field, 85 m
wide by 302 m long. Plant row spacing was 0.76 m, and the
rows ran in the east-west direction. The field had been
previously laser-leveled to zero side slope and a 0.5% slope
down from east to west. A subsurface drip irrigation system
was used, with drip lines buried 0.26 m below grade, one in
every plant row and running the full length of the field. Water
was applied on a daily basis.

The field was divided into four narrow strips, each 21.3 m
wide. Each of these strip plots was on a separate irrigation
circuit, and they were labeled 42A, 42B, 42C, and 42D from
south to north (fig. 1). Plots 42B and 42D were irrigated
normally, applying the average ET required (see DeTar,
2004) based on a system efficiency of 90%. In order to
simulate a furrow- or sprinkler-irrigated heavier soil where
an irrigation would be required about once every four weeks,
plots 42A and 42C were deficit-irrigated by about 25%
starting 25 June 2001, applying an average of 1.9 mm/d less
than the depth normally required. The average moisture
available in the root zone was about 127 mm at field capacity.

41D

41C

41B

41A

42D

42C

42B

42A

N

Figure 1. Plot plan.

Allen et al. (1998) gave the threshold point for start of water
stress at 56% depletion when the normal crop ET is 7.1 mm/d.
So the plan was to reach this point in 127*0.56/1.9 = 37 days,
which would be 1 August, well past the date at which full can-
opy should have been reached. Partial canopy was being
avoided because of the influence that exposed bare soil be-
tween the plant rows has on the scene temperatures.

In 2002, an adjacent field (field 41) was planted to Acala
PhytoGen-72 cotton. It had the same dimensions, layout, and
irrigation system as in field 42. But in this case plots, 41B and
41D were deficit-irrigated starting on 27 June 2002, and plots
41A and 41C were irrigated normally.

EQUIPMENT AND GROUND TRUTHING FOR FLIGHTS

Over the two years, data acquisition flights were made
between 19 July and 28 August each year, a period with full
canopy cover. The flights in 2001 were made almost weekly;
however, in 2002, there were fewer flights because of limited
funding. The light airplane (Cessna 206/210), pilot, camera
operator, and pre-processing were all provided by Opto-
Knowledge Systems, Inc., (OKSI) of Torrance, California.
OKSI also provided a hyperspectral (HSI) camera, called the
Airborne Visible/Near-Infrared (AVNIR) system, which had
a spatial resolution of 0.8 m from an altitude of 1500 m, with
60 bands of reflectance data in the range of 429 to 1010 nm
and a spectral resolution of 10 nm. Because of the numerous
references that must be made to different bands in the data
processing and presentation, band numbers were often used
in this study instead of wavelengths. The band numbers and
their associated wavelengths are given in table 1.

Also included from all flights were data from a set of
cameras provided by the USDA-ARS at Shafter, called the
Shafter Airborne Multispectral (MSI) Remote Sensing

Table 1. Wavelengths and corresponding band numbers used in the hyperspectral analysis.
Band Band Band Band

Center (nm) No. Center (nm) No. Center (nm) No. Center (nm) No.

1005.1 B1 859.86 B16 714.61 B31 569.36 B46
995.43 B2 850.18 B17 704.93 B32 559.68 B47
985.75 B3 840.49 B18 695.24 B33 549.99 B48
976.06 B4 830.81 B19 685.56 B34 540.31 B49
966.38 B5 821.13 B20 675.88 B35 530.63 B50
956.70 B6 811.44 B21 666.19 B36 520.94 B51
947.01 B7 801.76 B22 656.51 B37 511.26 B52
937.33 B8 792.08 B23 646.83 B38 501.58 B53
927.65 B9 782.39 B24 637.14 B39 491.89 B54
917.96 B10 772.71 B25 627.46 B40 482.21 B55
908.28 B11 763.03 B26 617.78 B41 472.53 B56
898.60 B12 753.34 B27 608.09 B42 462.84 B57
888.91 B13 743.66 B28 598.41 B43 453.16 B58
879.23 B14 733.98 B29 588.73 B44 443.48 B59
869.55 B15 724.29 B30 579.04 B45 433.79 B60



657Vol. 49(3): 655−665

System (SAMRSS) developed by Maas et al. (1999). This
package included three Dalsa digital cameras (Dalsa, Inc.,
Waterloo, Ontario, Canada) each with a different filter, one
for the green range of 545 nm to 555 nm, one for the red range
of 675 nm to 685 nm, and one near-infrared (NIR) camera for
the range 830 nm to 870 nm, all with a spatial resolution of
1 m. Included in the package was a thermal infrared (TIR)
camera (Indigo Merlin thermal imager from Indigo Systems,
Santa Barbara, Cal.) with a range of 8,000 nm to 14,000 nm
and a spatial resolution of 2.4 m, and in addition there was a
video camera.

On flight days, three 8 × 8 m fabric calibration panels
(Tracor Aerospace, Inc., Austin, Texas) were spread out on
the unpaved road at the east end of field 41. As near flight
time as possible, ground truthing was done with hand-held
infrared thermometers (Oakton InfraPro 3, Lesman Instru-
ment Co., Bensenville, Ill.), obtaining temperatures of
unpaved roads, fallowed fields, smooth bare soil walkways,
stressed and unstressed canopies, calibration panels, a pond,
unplanted but furrowed and cultivated soil at the east end of
field 42, and nearby alfalfa fields. Air temperature and
humidity (dry bulb and wet bulb) were measured above the
canopy in the field and also in areas around the field with a
battery-aspirated  psychrometer (Psychron model 566, Bel-
fort Instrument Co., Baltimore, Md.). Spectral radiometer
readings of the calibration panels were also taken using a
model LI-1800 (Li-Cor, Inc., Lincoln, Neb.). All these, along
with data from the Research Center’s weather station, were
sent to OKSI within 3 h after the flight for pre-processing.
Normal turn around time for the processing was about 24 h.

DATA ANALYSIS

Using ENVI, an image processing software (Research
Systems, Inc., Boulder, Colo.), images for both fields 41 and
42 were extracted from larger images acquired during the
flights and exported as ASCII files for further processing.
Excel was then used to convert these files to a format useable
by CoPlot v3.0 (CoHort Software, Monterey, Cal.) and by
ArcView GIS v3.3 (ESRI, Redlands, Cal.). For each flight
date, there were three categories of data: HSI, MSI, and TIR.
The initial procedure in ArcView is essentially the same for
all three categories. In 2001 for example, strip plots 42B and
42C were each subdivided into ten grids measuring 21.3 ×
30.2 m. Each of these grids was first selected, leaving a
one-pixel margin around the edge to act as a buffer; then, by
opening a theme table and selecting a field heading (band),
it was possible to get statistics for that grid area. For the TIR
data, there were only three columns of data (longitude,
latitude, and temperature), and the only statistic recorded was
the average temperature for that grid area. For the MSI data,
there were five columns of data: longitude, latitude, and the
reflectance for the green, red, and NIR bands. The averages
for each reflectance band were recorded for that grid area.
The same could have been done for the HSI data, but it would
have been tedious because there are 60 bands. So the HSI data
for each grid area were exported to a separate Excel file,
where the averages for each band were easily calculated. The
averages from each grid area were accumulated in a separate
file, one grid area to each row. The average spectral response
patterns for stressed versus unstressed treatments for each
flight were developed from this file. This grid-area file of
20 rows and 60 columns became the primary source for
regression analysis for each flight, when temperature data

were inserted into column 61. For validation purposes, the
entire procedure was repeated using the A and D plots of
fields 41 and 42.

UNSTRESSED BASELINE CANOPY TEMPERATURES

The VPD depends on the temperature and humidity of the
air above the crop canopy. For cotton under the arid conditions
of the Central Valley of California, the VPD ranges typically
from 2 to 4 kPa, and the corresponding difference between
well-watered canopy and air temperature is 3°C to 6.5°C. This
relationship was determined for the conditions locally in 2001
with the same hand-held IR thermometer and psychrometer
used during the ground truthing for flights. The results, shown
in figure 2, agree closely with those of Howell et al. (1984),
Pinter and Reginato (1982), and Idso et al. (1982). The
regression equation is:

Tb − Ta = 0.597 − 1.779*P (1)

where P is the vapor pressure deficit of air (kPa), Tb is the un-
stressed baseline canopy temperature (°C), and Ta is the air tem-
perature (°C). The RMSE was 0.534°C, and the maximum
residual was 1.10°C. Rearranging equation 1, the baseline tem-
perature is:

Tb = Ta + 0.597 − 1.779*P (2)

There is an upper limit to canopy temperatures, where the
leaves have completely stopped transpiring; it is independent
of the VPD, and it is generally thought to be 4°C to 6°C above
air temperature. So under some extreme conditions, the rise
in canopy temperature above the unstressed baseline could be
as much as 12°C. It is this rise in canopy temperature above
the lower baseline that we now use to correlate stress to the
MSI and HSI data.

The VPD above the canopy was measured at several
places in the cotton field, during, before, and after each flight.
From this, a theoretical unstressed baseline temperature was
calculated using equation 1. There is a slight problem with
the normal scatter around the baseline. The well-watered
canopy temperature can easily be 1°C above, or below this
baseline equation, depending on atmospheric conditions. It
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Figure 2. Unstressed baseline canopy temperature for Acala cotton.
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is an excellent guide, but it is better to use the lowest tempera-
ture seen in the TIR image as a reference, if the cotton plants
there are known to be in good soil, healthy, and well watered
with 100% canopy. This latter condition was available for al-
most all the flights, and when it was not, the theoretical base-
line was used. When there is some doubt about the coolest
place on the TIR image being stress free, it is important to
have the second source for verification. In general, baseline
temperatures from the two sources agreed quite well.

As stated above, the plant water stress is directly
proportional to the rise of canopy temperature above the
unstressed baseline. This rise can be expressed as:

Tr = Tc − Tb (3)

where Tc is the canopy temperature at any degree of stress as
measured by the TIR camera, and Tr is the rise in canopy tem-
perature above the unstressed baseline, a measure of plant
water stress. The value for Tr for each grid area was calcu-
lated by subtracting the Tb from each of the average grid val-
ues of TIR. These values of Tr were then inserted into column
61 of the HSI data, and also into column 4 of the MSI data.

MULTIPLE LINEAR REGRESSION

The combination of bands in the HSI grid-area files that
best correlated to the plant water stress were found by first
importing the files into CoPlot, one data set for each of nine
flights. Initially, each flight was analyzed separately. The
temperature rise (Tr) was considered the dependent variable,
and the various band reflectances were the independent
variables. There is a procedure available in CoPlot in which,
after a choice is made of the number of bands to include in
each multiple regression, the program looks at every possible
combination. The number of regressions required for pairs of
bands out of 60 available is 60*59/(1*2) = 1770. To find the
best 3-band combinations requires 60*59*58/(1*2*3) =
34,220 regressions, and 4-band combinations require
487,635 regressions. CoPlot uses matrix manipulation of
simultaneous equations with an accuracy of ten significant
figures and tests for collinearity. The program automatically
ranks and stores the results of the 100 best combinations
(models). The MSI data were processed the same way, but
this required far fewer regressions because there were only
three bands available to analyze.

The models were evaluated by comparing the observed
and predicted values. The root mean square error (RMSE),
the average relative percent error (ARPE) from Jakeman et
al. (1990), the coefficient of efficiency (EFF) from Nash and
Sutcliffe (1970), and the coefficient of determination (r2)
were calculated for both the model calibration and the
validation data:
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where
Oi = individual observed value
Pi = individual predicted value

O = mean observed value

P = mean predicted value
n = number of paired values.
The RMSE is an indicator of the scatter around the

regression line, while the ARPE expresses the error, and the
sign of the error indicates whether the model over- or
underestimated  the values. The EFF term evaluates the error
relative to natural variation in the observed values, and varies
from −∞  to 1, with EFF values greater than zero indicating
that the model is a good predictor. The r2 ranges from 0 to 1,
with the higher values indicating better agreement between
predicted and observed values, and depends in part on the
range of values included, the slope, and the RMSE. The r2

evaluates only linear relationships between variables, where-
as the EFF is sensitive to differences in the means and
variances and is a better measure to evaluate model
simulations (Lagates and McCabe, 1999).

RESULTS AND DISCUSSION
SPECTRAL RESPONSE PATTERNS

Some examples of how plant water stress affect the
spectral response curves are shown in figure 3. In each case,
the average band reflectance for the entire stressed plot is
plotted along with that for the entire unstressed plot. The
difference between the two is also plotted. In the case of
figure 3a, which shows the spectral response curve for the
flight of 25 July 2001, the stressed plot is 42C (field 42,
plot C), and the unstressed plot is 42B (field 42, plot B).
Figures 3a and 3c are for flights during relatively low-stress
periods, and figures 3b and 3d are for high-stress periods. In
comparing one flight to another, there is a considerable
difference in the peaks, valleys, slopes, and general magni-
tude in the NIR region. Most of these irregularities have
nothing to do with the stress treatments. Both the stressed and
unstressed curves in each flight have nearly the same shape,
and the result is an almost constant difference over a large
range of wavelengths. The most notable effect of stress is the
increased difference in the response curves for wavelengths
greater than 760 nm, in the NIR region, with the stressed
treatment having the lower reflectance values.

The difference between the average temperature of the
entire stressed plot (Ts) and the entire unstressed plot (To) was
considered to be a measure of stress. This is plotted against
time in figure 4a for 2001 and in figure 5a for 2002. One
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Figure 3. Spectral response patterns for B and C plots: (a) low stress difference, field 42, 25 July 2001; (b) high stress difference, field 42, 16 August
2001; (c) low stress difference, field 41, 31 July 2002; and (d) high stress difference, field 41, 14 August 2002.
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Figure 4. (a) Differences in the average plot temperature for stressed vs.
unstressed treatments in 2001, and (b) differences in average broadband
NIR (B1 to B9) reflectance over time.

typical characteristic of plant water stress is that it tends to
happen without much warning or lead-time. This is shown
clearly in figure 5a, where little stress is shown until after
DOY 220 (8 August), when the average temperature differ−
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Figure 5. (a) Differences in average plot temperature for stressed vs. un-
stressed treatments for 2002, and (b) differences in average broadband
NIR (B1 to B9) reflectance over time.

ence rises by over 2°C in 7 days. By plotting average differ-
ences in a range of NIR reflectance values over time on the
same graph with the temperature differences (figs. 4b and
5b), one can easily see that they behave in a similar manner.
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Figure 6. Difference in average plot temperature for stressed vs. un-
stressed treatments as a function of the broadband NIR (B1 to B9) reflec-
tance.

The range of NIR reflectance values used was the average of
bands B1 through B9 (923 nm to 1010 nm). Ro denotes the
average NIR reflectance for the unstressed plot, and Rs de-
notes the same for the stressed plot.

To determine the actual relationship, the difference in the
plot temperatures is plotted against Ro − Rs in figure 6. The
r2 of 0.911 is quite good, with a root mean square error
(RMSE) of 0.40°C, which is less than the normal variability
around the baseline for uniform, unstressed plants. This
RMSE is also only 1.3% of the average canopy temperature
for the four flights, which was 29.8°C. The efficiency of the
regression is 0.968. The result is relative, not absolute,
i.e., the difference in the average B1-B9 reflectance value for
two different parts of a field is correlated to the difference in
the canopy temperature. We can predict that one part of a
field has a much higher temperature than another part, but we
cannot predict the actual temperatures with this procedure.

MULTIPLE REGRESSION

Using multiple linear regression, the rise in the average
canopy temperature above the unstressed baseline for each
individual grid area (Tr) was found to be correlated to several

combinations of bands. The models with the highest r2 for
one band, two bands, and three bands are given in table 2 for
each of the nine individual flights. Some of the single-band
models had low, but still significant, r2 values. The r2 values
for 2-band models were generally very good, all greater than
0.86. Increasing the number of parameters (bands) in the
regression analysis generally increased the r2 value, but in
several cases the increase was not significant. In looking at
the 100 best models for each individual flight, it was found
to be nearly impossible to find a set of bands that worked
consistently well on all of the flights. Occasionally, the same
set of bands, from somewhere in the top 100 r2 values of each
flight, was found to work well in two or three flights, but even
then, the equations were dissimilar, e.g., with different signs
on the coefficients. This problem with consistency was noted
by Goel et al. (2003). The problem was also addressed in a
comprehensive study by Thenkabail et al. (2000), using
stepwise linear regression analysis. One way to find a
consistent model for all the flights was to merge all the data
into one large file before regressing. So data sets were
combined for all six of the 2001 flights, and then another set
of nine flights was set up by adding in the three flights from
2002.

The models with the highest r2 in the combined flights are
given in table 3. Merging the database from the 9-flight data
caused more scatter and generally reduced the r2. This was
probably due to the broader range of field and atmospheric
conditions encountered. The ten best 2-band models for the
6-flight and 9-flight combinations are given in table 4, and
the best 3-band models are given in table 5. It is important to
notice here that there are a lot of different combinations that
work well, all with r2 > 0.9, and it is obvious that there is not
just one, unique solution. Band B34 (686 nm) appears most
frequently in the 40 models listed in tables 4 and 5.

Figure 7 shows how well the data from one of the 2-band
models fit the linear regression line (the dashed line) for the
6-flight combination. The x-axis for this plot was developed
by starting with the linear multiple regression equation:

Tr = a − b*R24 + c*R52 (8)

where R24 and R52 are the reflectances for bands B24 and
B52, respectively, and in this case a = 9.08, b = 24.54, and c =
263.3, with r2 = 0.948 and RMSE = 0.638°C. Equation 4 can
also be written as:

Tr = a − b*(R24 − m*R52) (9)

Table 2. Bands with highest r2 for each individual flight using multiple linear regression on hyperspectral data.
1-Parameter 2-Parameter 3-Parameter

Flight Year Date Band r2 Bands r2 Bands r2

1 2001 July 19 B36 0.749 B38, B52 0.924 B38, B52, B55 0.954
2 2001 July 25 B38 0.836 B34, B35 0.868 B32, B52, B55 0.925
3 2001 8 August B5 0.961 B5, B34 0.980 B14, B22, B35 0.988
4 2001 6 August B38 0.936 B30, B42 0.985 B30, B46, B48 0.988
5 2001 21 August B8 0.914 B29, B55 0.978 B29, B54, B55 0.986
6 2001 28 August B8 0.917 B14, B26 0.959 B14, B24, B26 0.984
7 2002 31 July B5 0.843 B10, B11 0.870 B7, B53, B55 0.923
8 2002 7 August B53 0.664 B8, B15 0.878 B8, B15, B17 0.942
9 2002 14 August B6 0.941 B7, B9 0.965 B23, B28, B48 0.981
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Table 3. Bands with the highest r2 for combined flights
using multiple linear regression on hyperspectral data.

6 Flights 9 Flights

Bands r2 Bands r2

B25 0.479 B25 0.547
B14, B52 0.951 B17, B34 0.931
B14, B34, B57 0.962 B16, B21, B34 0.940
B18, B33, B34, B39 0.966 B1, B11, B28, B39 0.949

Table 4. Bands with the ten highest r2 for combined flights using
2-parameter multiple linear regression on hyperspectral data.

6 Flights 9 Flights

Bands r2 Bands r2

B14, B52 0.951 B17, B34 0.931
B15, B34 0.949 B16, B34 0.930
B14, B56 0.949 B18, B34 0.930
B24, B52 0.948 B19, B34 0.927
B18, B52 0.948 B22, B34 0.923
B28, B52 0.947 B23, B34 0.922
B14, B54 0.947 B24, B34 0.920
B16, B52 0.947 B21, B34 0.920
B14, B51 0.947 B29, B34 0.919
B14, B58 0.946 B26, B34 0.919

Table 5. Bands with the ten highest r2 for combined flights using
3-parameter multiple linear regression on hyperspectral data.

6 Flights 9 Flights

Bands r2 Bands r2

B14, B34, B57 0.962 B16, B21, B34 0.940
B14, B34, B56 0.962 B17, B25, B34 0.939
B14, B34, B58 0.961 B1, B26, B34 0.938
B28, B45, B52 0.961 B17, B23, B34 0.938
B28, B46, B52 0.961 B3, B26, B34 0.938
B28, B47, B52 0.960 B17, B24, B34 0.937
B14, B36, B60 0.960 B2, B26, B34 0.937
B14, B38, B60 0.960 B3, B19, B34 0.937
B15, B34, B56 0.959 B6, B17, B34 0.937
B14, B37, B60 0.959 B3, B17, B34 0.937

where m = c/b, and the expression in the parentheses is a type
of vegetation index, which can be expressed as:

I24−52 = R24 − m*R52 (10)

with m = 10.729. Substituting equation 6 into equation 5
produces:

Tr = a − b*I24−52 (11)

a simple linear equation, plotted as the dashed line in figure 7.

R24 = 10.729*R52
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Figure 7. Rise in canopy temperature as a function of a 2-parameter HSI
vegetation index for all data from 6 flights in 2001. For the non-linear
function: r2 = 0.962 and RMSE = 0.55°C.

Equations 3 and 11 were used to predict the canopy
temperatures in field 42 for a flight on 31 July 2001, when the
TIR camera had failed. The resulting average temperature for
some of the unstressed grid areas was considerably below the
baseline. This situation was caused by the fact that by using
the linear expression in equation 11, the Tr values go negative
at the higher, well-watered, values for I24−52. To avoid this
problem, a curvilinear function was established for the data
in figure 7, so that Tr approaches zero at large values of I24−52.
This function is the solid line in figure 7 and is of the form:

Tr = (c1 + c2*I + c3*I2)*e^(I/c4) (12)

The coefficients c1, c2, and c3 were evaluated by a
nonlinear multiple regression program in CoPlot, after
various values for c4 were selected manually to force the
minimum value of the function to zero. For the data in
figure 7, these coefficients were 9.48, −42.00, 46.61, and
0.72, respectively. Several different vegetation indices were
fitted this way for some of the better flight combinations, and
the results are shown in tables 6 and 7. In the 22 models
shown, band B52 appears most often (eight times). Bands
B16 and B34 both appear seven times. It should be noted that
the r2 for the non-linear functions was always higher than for

Table 6. Vegetation indices and nonlinear equations for some of the 2-parameter models with
high r2, using the equation of the form Tr = (c1 − c2*I + c3*I2)*e^(I/c4) on hyperspectral data.

Flight
Combinations Vegetation Index (I) c1 c2 c3 c4 r2

RMSE
(°C)

6 Flights R24 − 10.729*R52 9.48 42.00 46.61 0.72 0.962 0.55
R28 − 9.940*R52 9.20 49.97 69.07 0.56 0.961 0.55
R18 − 11.121*R52 9.95 42.77 46.14 0.67 0.961 0.55
R14 − 9.284*R52 10.73 51.39 61.48 0.52 0.959 0.56
R14 − 10.261*R56 12.22 53.26 58.13 0.52 0.959 0.57

9 Flights R17 − 4.450*R34 12.21 38.49 30.34 0.60 0.939 0.63
R14 −10.255*R56 12.97 52.86 53.97 1.00 0.937 0.64
R15 − 9.167*R58 14.77 58.44 58.04 1.10 0.937 0.64
R27 − 9.391*R52 9.94 44.18 49.25 1.40 0.934 0.66
R24 −9.800*R52 10.47 42.28 42.84 1.60 0.934 0.66
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Table 7. Vegetation indices and nonlinear equations for some of the 3- and 4-parameter models with
high r2, using the equation of the form Tr = (c1 − c2*I + c3*I2)*e^(I/c4) on hyperspectral data.

Flight
Combinations Vegetation Index (I) c1 c2 c3 c4 r2

RMSE
(°C)

6 Flights −R12 + 2.226*R14 − 11.20*R52 11.05 40.05 36.42 0.65 0.968 0.50
R28 + 4.081*R45 − 15.15*R52 10.22 51.97 66.01 0.45 0.968 0.50
R14 − 2.162*R34 − 4.465*R57 12.57 48.46 46.65 0.48 0.968 0.50
−R6 + 4.119*R14 − 28.62*R52 11.29 15.73 5.49 1.70 0.968 0.50
R14 − 3.656*R36 − 3.868*R60 11.53 48.50 51.04 0.42 0.966 0.51
R18+7.57*R33−5.20*R34−9.86*R39 12.34 37.20 28.08 0.55 0.971 0.47

9 Flights R16 − 0.639*R21 − 1.318*R34 14.07 127.8 290.2 0.20 0.948 0.58
R17 − 0.612*R25 − 1.804*R34 13.07 99.16 188.3 0.23 0.947 0.59
R16 − 3.269*R34 − 2.773*R54 12.44 41.96 35.39 0.65 0.944 0.60
R22 − 0.615*R27 − 1.872*R34 12.58 89.50 159.3 0.29 0.944 0.61
R6 + 2.932*R17 − 17.27*R34 12.00 10.29 2.20 2.20 0.943 0.61
R1−0.88*R11+0.61*R28−4.66*R39 7.30 61.22 128.4 0.29 0.955 0.54

R17 = 4.45*R34
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Figure 8. Rise in canopy temperature as a function of a 2-parameter HSI
vegetation index for all data from 2001 and 2002 (9 flights): r2 = 0.939 and
RMSE = 0.63°C.

the linear functions. In the case of the models in figure 7, go-
ing from linear to non-linear increased r2 from 0.948 to 0.962

and reduced the RMSE from 0.64°C to 0.55°C. An example
of one of the better-fitting nonlinear regression equations for
the 2-band, 9-flight combination is shown in figure 8. For fig-
ure 8, the improvement in r2 was from 0.931 to 0.939, and the
RMSE dropped from 0.67°C to 0.63°C. These results indi-
cate that in some cases there is a slight curvature in the basic
data relating temperature rise to the new vegetation indices.

MULTISPECTRAL ANALYSIS

The MSI models shown in tables 8 and 9 have relatively
low r2 values, and a lot of scatter is shown in figures 9 and 10,
so it appears that the bands that were used in MSI were not
quite close enough to the proper wavelength for the best
detection of plant water stress. The 3-parameter, nonlinear
MSI regression equation shown in figure 9 fits the data for the
6-flight combination fairly well, with an r2 of 0.929 and
RMSE of 0.76°C; however, the 2-band HSI data shown for
the same flights in figure 7 is a much better fit, with an r2 of
0.962 and RMSE of 0.55°C. When the 2002 data were added
in to form the 9-flight combination, the fit for the MSI data,
shown in figure 10, got much worse than the comparable
9-flight HSI data shown in figure 8. That the HSI data is much
better than MSI for the larger range of conditions shows the
need for careful selection of the filters for the MSI cameras.
For the 9-flight combination, using 3-bands of MSI data, the
resulting regression equation, in tables 8 and 9, showed that
the coefficient for the green band was very small, and from

Table 8. Results of multiple linear regression on multispectral data.
Flight
Combinations MSI Bands Linear Equations r2

RMSE
(°C)

6 Flights Green Tr = 9.14 − 96.01*G 0.139 2.65
Red Tr = −7.05 + 294.6*R 0.476 2.07
NIR Tr = 15.77 − 19.85*N 0.792 1.30
Green, Red Tr = −1.61 − 94.70*G + 293.5*R 0.612 1.78
Green, NIR Tr = 13.49 + 106.5*G − 26.06*N 0.886 0.97
Red, NIR Tr = 8.15 + 148.2*R − 16.19*N 0.886 0.97
Green, Red, NIR Tr = 9.07 + 72.10*G + 100.3*R − 21.58*N 0.919 0.81

9 Flights Green Tr = 7.90 − 76.17*G 0.181 2.37
Red Tr = −4.34 + 211.0*R 0.340 2.13
NIR Tr = 15.45 − 19.79*N 0.746 1.32
Green, Red Tr = 0.55 − 84.86*G + 224.4*R 0.563 1.73
Green, NIR Tr = 15.01 + 33.15*G − 22.43*N 0.767 1.26
Red, NIR Tr = 9.49 + 124.8*R − 17.30*N 0.854 1.00
Green[a], Red, NIR Tr = 9.60 + 6.24*G + 121.0*R − 17.87*N 0.854 1.00

[a] The contribution of G to this 3-parameter regression was not significant.
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Table 9. Vegetation indices and results of nonlinear regression analysis on multispectral
data, using the equation of the form Tr = (c1 − c2*I + c3*I2)*e^(I/c4).

Flight
Combinations MSI Bands Vegetation Index (I) c1 c2 c3 c4 r2

RMSE
(°C)

6 Flights Green, Red[a] G − 3.099*R 0.40 20.32 588.6 10.0 0.629 1.74
Green, NIR N − 4.086*G 13.24 45.19 38.57 0.52 0.892 0.94
Red, NIR N − 9.151*R 8.37 25.25 19.09 1.70 0.899 0.91
Green, Red, NIR N − 3.34*G − 4.65*R 9.38 36.31 35.16 0.80 0.929 0.76

9 Flights Green, Red[a] G − 2.644*R 1.22 15.46 987.2 10.0 0.636 1.58
Green, NIR N − 1.478*G 19.77 50.11 31.83 2.00 0.786 1.21
Red, NIR N − 7.213*R 10.55 29.56 20.69 3.00 0.877 0.92
Green[b], Red, NIR N − 0.349*G − 6.768*R 10.67 31.38 23.27 2.20 0.878 0.91

[a] Minimum Tr > 0.
[b] The contribution of G to this 3-parameter regression was not significant.

N − 3.34*G − 4.65*R
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Figure 9. Rise in canopy temperature as a function of a 3-parameter MSI
vegetation index for all data from 6 flights in 2001: r2 = 0.929 and RMSE =
0.76°C.

the regression analysis, adding green to the NIR and red com-
bination did not significantly increase the r2 value.

WEIGHTED NDVI
From the vegetation indices given in table 6, one notes that

the coefficient on the visible (B35 to B60) term is always
much greater than unity, and in all but one case the coefficient
is between 8.8 and 11.1. These are very high weighting
factors. Similarly, in table 9, when one of the terms in a
2-parameter vegetation index is NIR and the other is red, the
coefficient on the red term is between 7.2 and 9.2 times that
of the NIR term. This suggests a modification in the
normalized difference vegetation index (NDVI) that puts
equal weighting on the NIR and red terms. So, as seen in
table 10, the vegetation indices from table 9 that contain only
the NIR and red terms were normalized to the form (N −
w*R)/(N + w*R), where R is the reflectance from the red
band, N is the reflectance from the NIR band, and w is the
weighting factor. The correlation for the linear regression of
this weighted NDVI is good for the combination of 6 flights
from 2001, with an r2 of 0.883, nearly the same as with the
non-normalized regression results in table 8, which has an r2

of 0.886.

N − 7.213*R
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Figure 10. Rise in canopy temperature as a function of a 2-parameter MSI
vegetation index for all data from 2001 and 2002 (9 flights): r2 = 0.877 and
RMSE = 0.92°C.

Table 10. Results of simple linear regression
of weighted NDVI as vegetation index.

No. of
Flights

Vegetation
Index (I)[a] Linear Equation r2

RMSE
(°C)

6
N − 9.15*R
N + 9.15*R Tr = 8.32 −16.48*I 0.883 0.98

9
N − 7.21*R
N + 7.21*R Tr = 9.89 −16.45*I 0.809 1.14

[a] N and R indicate the reflectances from the NIR and red bands.

Table 11. Results of nonlinear regression of weighted
NDVI as vegetation index, using the equation
of the form Tr = (c1 − c2*I + c3*I2)*e^(I/c4).

No. of
Flights c1 c2 c3 c4 r2

RMSE
(°C)

6 8.49 28.54 24.06 0.68 0.887 0.96
9 10.70 29.42 20.28 1.20 0.829 1.08

By comparing the results of the nonlinear regression
analysis of the normalized indices in table 11 to the linear
regression results in table 10, one can see that the correlation
for the 6-flight data did not improve, suggesting that the basic
data are linear. For the 9-flight data, there was some
improvement in the r2 value.
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HIGH-DEFINITION STRESS IMAGE (HDSI)
The TIR image for the flight of 28 August 2001 for field

42 is shown in figure 11. From table 9, the best nonlinear
regression equation for the 6-flight, 3-band, MSI data had an
r2 of 0.929, and it is shown here:

Tr = (9.381 − 36.31*Inrg + 35.16*(Inrg)2)*e^(Inrg/0.8) (13)

where
Inrg = N − 3.341*G − 4.646*R (14)
G = reflectance from the green band.
Using Excel, columns representing equations 13 and 14 were

added to the pixel-by-pixel data set for the flight date to form
columns 6 and 7, respectively, as if they were additional bands.
Columns 1 and 2 were the latitude and longitude of each pixel.
Tr was then plotted as a function of the location coordinates
using ArcView, and the result, the predicted temperature rise
above the baseline, a measurement of stress, is shown in figure
12. The MSI image in figure 12 is much sharper than the TIR
image in figure 11, one of the reasons being the difference in
resolution, but with TIR there is also a certain amount of natural
blurring of the temperatures, especially at the edges of the field.
The 1.5 m wide access walkways are easily visible in figure 12
and not in figure 11. The entire field is stressed, but the B strip
has less of a temperature rise than the rest of the field, and this
effect stands out in both figures 11 and 12, but more clearly in
the latter. We have named figure 12 a high-definition stress
image (HDSI). The farm manager may appreciate being able to
see the small hot spots before they become large hot spots. The
relationship between the predicted temperature rise and the
observed temperature rise is shown in figure 13. The r2 is 0.898
and the RMSE is 0.72°C, which is 9.1% of the average
temperature rise, all indicating a good prediction of plant water
stress.

As far as how much of a temperature rise is too much,
Reginato (1983) suggested that a temperature rise of 2°C to
3°C above the unstressed baseline for VPD values in the
range of 2 to 4 kPa was optimum as a scheduling guide for
irrigation of cotton, and according to Howell et al. (1984), it
also corresponds to leaf water potentials of −1.7 to −1.8 MPa.
There were still a few areas shown in figures 11 and 12 that
had not passed this level, but most of the field was severely
stressed.

Figure 11. TIR-based image for temperature rise for flight of 28 August
2001; 5-level quantile classification: white < 6.9°C < light gray < 8.5°C <
gray < 10.47°C < dark gray < 14.58°C < black.

Figure 12. Temperature rise for flight of 28 August 2001 using MSI 3-pa-
rameter model; 5-level quantile classification: white < 6.42°C < light gray
< 7.72°C < gray < 9.23°C < dark gray < 11.66°C < black.

Observed temperature rise using TIR (deg. C)
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Figure 13. Temperature rise predicted by 3-parameter, 6-flight nonlinear
MSI model compared to rise observed with TIR camera for 28 August
2001: RMSE = 0.72°C and r2 = 0.898.

Table 12 shows the results of the validation tests. As one
would expect, the performance of the validation sets was
lower than for the calibration model. The RMSE is higher for
the validation data set than for the calibration data set, but the
difference would not be considered extreme. The ARPE
values show an underprediction by 6.5% for the validation
data set, primarily due to greater residuals at the higher
temperatures (Tr > 5°C). The r2 values are very reasonable,
and the EFF of 0.8 to 0.9 is exceptionally good. Negative
values for EFF are classified as unacceptable, anything
greater than zero can be called good, and anything above 0.5
is considered very high.

It was noticed in some cases that bands adjacent to the
optimum band worked almost equally well as the optimum
band. For example, in the 9-flight data of table 4, the first
parameter of the 2-parameter HSI model could easily have
been B16, B18, or B19, all which had nearly the same
correlation as the optimum B17. In other cases, the adjacent
bands were much less satisfactory, and the optimum band-
width was very narrow. For example, no band other than B34
appears as the second term in the 9-flight data of table 4.
Likewise for the 9-flight data in table 5, where no band other
than B34 appears in the top 20 for the third term in a
3-parameter HSI model.

Goel et al. (2003), using essentially the same procedure as
in this study, which is band selection with multiple regres-
sion, were successful in finding optimum bands for several
biophysical properties of corn. They had only one 3-parame-
ter model that had a higher r2 than ours; it was 0.97 for plant
greenness during one flight. Our best 9-flight, 3-parameter

Table 12. Validation with 2-band (B17, B34) model for 9 flights,
using multiple linear regression on hyperspectral data.

Factor Model Calibration Validation

RMSE 0.617 0.851
EFF 0.937 0.894

ARPE −0.0347 −0.065
r2 0.931 0.907
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linear HSI model had an r2 of 0.940 and an RMSE of 0.63°C,
and the non-linear fit was even better. Goel et al. (2003) were
concerned about the problem of collinearity or codependence of
many band reflectances (Longley, 1967; Beaton et al., 1976)
and suggested that with the goal of prediction rather than ex-
planation, collinearity is less of a problem. Our study used a
simple, straightforward multiple regression method for obtain-
ing optimum bands, and it worked well over a wide range of
field and atmospheric conditions. It resulted in a high degree of
correlation between some new vegetation indices and field
measurements. Especially significant is the weighted NDVI,
which should require much less calibration than the normal
NDVI. The results of this study can be used to better select the
wavelengths used in the filters on the MSI cameras. With the
proper filters on the MSI cameras, both the HSI camera and the
TIR camera could be eliminated for detection of plant water
stress, and there could be a very large reduction in the quantity
of data that needs to be stored and manipulated.

CONCLUSIONS
This study shows that plant water stress can be measured

with airborne MSI and HSI cameras flown over cotton fields.
Very strong relationships were found between the rise in
cotton canopy temperature above a baseline and several new
vegetation indices under full-canopy conditions. The best
2-parameter indices are all of the form Tr = N − w*V, where
N is the reflectance from a band in the NIR range, V is the
reflectance from a band in visible range, and w is a weighting
factor that is much greater than unity. The w term is generally
greater than 4, and is most often in the range of 7 to 11. The
best combinations from the HSI data indicate which filters
would be best fitted to the MSI cameras to get very sharp
stress images. One of the best pairs of wavelengths found for
all 9 flights combined was an NIR band of 686 nm and a
visible band of 850 nm. The best fit for a 3-parameter model
had bands centered at wavelengths of 686 nm, 811 nm, and
860 nm. For the 4-parameter model, the best fit was found
with bands centered at 637 nm, 744 nm, 908 nm, and
1005 nm. One of the advantages of this procedure is that one
can substitute HSI or MSI cameras for the TIR camera on
board the plane. Differences in a broadband NIR values were
found to be associated with differences in plant water stress.
A good correlation was found between a weighted NDVI and
plant water stress of Acala cotton.
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